
PHOTOCYCLIZATION OF METHYL 2-ARYLTHIOACETOACETATES A FACILE SYNTHESIS OF BENZOTHIOPHENES

Tadashi Sasaki* and Kenji Hayakawa

Institute of Applied Organic Chemistry, Faculty of Engineering Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

<u>Summary</u>: A series of methyl 2-arylthioacetoacetates was irradiated in a benzene-methanol solution to give benzothiophenes in satisfactory yields.

Photocyclization of S-aryl vinyl sulfides is a useful new method for preparing fivemembered sulfur heterocycles.¹⁻³ The reaction is known to occur from the triplet excited state $\frac{4}{\text{via}}$ the thiocarbonyl ylide intermediates.³ We wish to report in this letter a facile synthesis of 2-methoxycarbonylbenzothiophenes by photocyclization of methyl 2-arylthioacetoacetates which were conveniently prepared in high yields by the reaction of methyl 2-chloroacetoacetate with appropriate arylmercaptanes in the presence of equimolar triethylamine. Thus obtained compounds (1) exist predominantly in the enolic form (IR,NMR). Irradiation of <u>1a</u> (Ar = phenyl) in a benzene-methanol (1:1) solution under argon with a high pressure mercury lamp through a Pyrex filter followed by purification gave <u>2a</u> (X = H) in 66% yield. The similar cyclodehydration occurred on irradiation of the related compounds to

give the corresponding benzothiophenes in fair yields (Table 1). In a case of <u>lh</u>, a regiospecific cyclization was observed and only naphth[2,1-b]thiophene <u>4</u> was formed. The structure was supported by a characteristic downfield shift of methyl signal (δ 3.24 ppm) owing to the deshielding effect of a proximate aromatic ring. Compound <u>lj</u> was inactive on

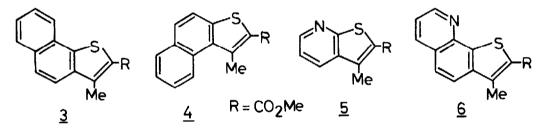

Starting Materials			NMR (δ,	NMR (δ, CDC1 ₃)	
(Ar =)	Products (Yields)	отр — тр	000 <u>Me</u>	Me	
$\underline{1a} (C_6 H_5^{-})$	2a (X = H) (66)	3) 104-105 ⁰ d	3.91	2.77	
<u>$1b$</u> (p-Me-C ₆ H ₄ -)	$\frac{2b}{2}$ (X = Me) (61)	89-90 ⁰	3.92	2.75	
$\frac{1}{1c}$ (p-MeO-C ₆ H ₄ -)	2c (X = OMe) (57)	8) 93-95 ⁰	3,90	2.72	
$\frac{1}{1d}$ (p-F-C ₆ H ₄ -)	2d (X = F) (56)	b) 131-132 ⁰	3.92	2.71	
$\frac{1}{1e}$ (p-C1-C ₆ H ₄ -)	2e (X =C1) (51	a) 146-147 ⁰	3.93	2.73	
$\frac{1}{1f}$ (p-Br-C ₆ H ₄ -)	$\frac{2f}{2f}$ (X = Br) (55)	}) 160-161 ⁰	3.90	2.70	
<u>lg</u> (1-naphthy1)	3 (64	≵) 159-161 ⁰	3,90	2.74	
<u>lh</u> (2-naphthyl)	4 (56)	\$) 127-128.5 ⁰	3,93	3.24	
li (2-pyridyl)	5 (50	\$) 122-124 ⁰	3.95	2.76	
lj (4-pyridyl)	no				
1k (8-quinoly1)	<u>6</u> (53	3) 138-139 ⁰	3,96	2.72	

Table 1. Photocyclization of Methyl 2-Arythioacetoacetates a,b

a. All photolyses were carried out in a benzene-methanol (1:1) solution.

b. Satisfactory elemental analyses were obtained for all new compounds.

c. Isolated yields. d. Lit.⁶ mp. 102.5-103⁰.

the similar irradiation and only slow polymer formation was observed. The photocyclization most probably occurs from the enolic form of 1 via the ylide intermediates. The similar photocyclization reaction of N-analogs was reported.⁵ Further studies of other enolizable systems are in progress.

References

- 1. S.H. Groen, R.M. Kellogg, J. Buter, and H. Wynberg, J.Org.Chem., 33, 2218 (1968).
- 2. A.G. Schultz and M.B. DeTar, J. Amer. Chem. Soc., 98, 3564 (1976).
- 3. A.G. Schultz, W.Y. Fu, R.D. Lucci, B.G. Kurr, K.M. Lo, and M. Boxer, <u>J.Amer.Chem.Soc</u>., 100, 2140 (1978).
- 4. T. Wolff, J.Amer.Chem.Soc., 100, 6157 (1978).
- 5. A.G. Schultz and W.K. Hagmann, J.Org.Chem, 43, 3391 (1978).
- 6. T. Higa and A.J. Krubsack, <u>J.Org.Chem.</u>,<u>41</u>, 3399 (1976).

(Received in Japan 27 December 1979)